Scaled Gromov hyperbolic graphs
نویسندگان
چکیده
In this paper, the δ-hyperbolic concept, originally developed for infinite graphs, is adapted to very large but finite graphs. Such graphs can indeed exhibit properties typical of negatively curved spaces, yet the traditional δ-hyperbolic concept, which requires existence of an upper bound on the fatness δ of the geodesic triangles, is unable to capture those properties, as any finite graph has finite δ. Here the idea is to scale δ relative to the diameter of the geodesic triangles and use the Cartan-AlexandrovToponogov (CAT) theory to derive the thresholding value of δ/diam below which the geometry has negative curvature properties.
منابع مشابه
Upper bound on scaled Gromov-hyperbolic δ
The Gromov-hyperbolic δ or “fatness” of a hyperbolic geodesic triangle, defined to be the infimum of the perimeters of all inscribed triangles, is given an explicit analytical expression in term of the angle data of the triangle. By a hyperbolic extension of Fermat’s principle, the optimum inscribed triangle is easily constructed as the orthic triangle, that is, the triangle with its vertices a...
متن کاملScaled Gromov Four-Point Condition for Network Graph Curvature Computation
In this paper, we extend the concept of scaled Gromov hyperbolic graph, originally developed for the Thin Triangle Condition (TTC), to the computationally simplified, but less intuitive, Four-Point Condition (FPC). The original motivation was that, for a large but finite network graph to enjoy some of the typical properties to be expected in negatively curved Riemannian manifolds, the delta mea...
متن کاملNode Expansions and Cuts in Gromov-hyperbolic Graphs
Gromov-hyperbolic graphs (or, hyperbolic graphs for short) are a non-trivial interesting classes of “non-expander” graphs. Originally conceived by Gromov in 1987 in a different context while studying fundamental groups of a Riemann surface, the hyperbolicity measure for graphs has recently been a quite popular measure in the network science community in quantifying ”curvature” and “closeness to...
متن کاملGromov Hyperbolicity in Mycielskian Graphs
Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph GM is hyperbolic and that δ(GM) is comparable to diam(GM). Furthermore, we study the extremal problems of finding the smallest and largest hyperbolicity constants of such graphs;...
متن کاملGromov Hyperbolicity in Strong Product Graphs
If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity const...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Graph Theory
دوره 57 شماره
صفحات -
تاریخ انتشار 2008